首页 > 资料 > 论文专著 > 正文

石灰石-石膏湿法烟气脱硫塔内流场模拟及优化分析

2017-07-30 09:17:57 来源:网络
2.2研究方法

2.2.1模型建立本研究借助于前处理软件Gambit建立喷淋塔模型,并在Fluent软件中进行计算分析。基于简化和假设,采用CFD前处理软件GAMBIT进行建模和网格划分。其中,模型建立数据依据喷淋塔尺寸设置,采用结构化网格Hex/wedge,局部网格加密。

2.2.2边界条件和初始参数设置

烟气进口设置为Velocity-in;烟气出口为Outflow;三层喷淋层设置为Interior,并采用面喷淋方式(surface);浆液颗粒粒径采用Rosin-Rammler模型,粒径大小1500 ̄2500μm,平均粒径2000μm;其他表面均为Wall。

2.2.3求解参数设置

烟气从喷淋塔下部进入塔内,视为连续相。采用欧拉方法,即控制体积法进行描述。根据塔内流动的实际情况,采用RNGk-ε湍流模型来模拟烟气的湍流流动。浆液颗粒从喷嘴喷出,视为离散相。采用拉格朗日方法,即颗粒跟踪法进行描述。

由于脱硫塔内烟气的湍流,运用DPM模型时,采用随机漫步模型来模拟烟气湍流对液滴运动轨迹的影响。此外,各壁面在DPM模型中,均设置为逃逸。数值算法采用如下设置:压力采用Simple算法;离散格式采用有限体积法;对流离散格式采用二阶迎风。

3模型分析

3.1连续相的速度和湍动能分布

对未加入喷淋的烟气流场进行模拟,空塔内的x=0截面上烟气速度和湍动能分布如图1所示。

湿法脱硫

从图1可以看到,烟气从右下方进入喷淋塔空塔,在靠近烟气进口侧的塔壁烟气流速明显下降,烟气主要沿着烟气进口对面的空间向上流动。在烟气到达烟气出口附近时,由于烟气流通截面的突然减小,烟气流速明显增大。

另一方面,在烟气进口处,由于烟气流通截面的突变,烟气的湍动能较大;同理,在烟气出口处,出口拐角再次发生湍动能增大的现象。而在进入喷淋塔空塔内部后,在靠近烟气进口侧附近,烟气的湍动能明显增强,这是由于塔内烟气速度的分布不均引起的。

3.2离散相的速度分布

对加入喷淋的烟气流场进行模拟,塔内的x=0截面上浆液的速度分布如下页图2所示。

湿法脱硫湿法脱硫