0∶50,在额定工况下布风板设计烟速由3.83m/s降低为3.65m/s,加上下二次风喷嘴中心上移0.5m,物料在强还原气氛下的富燃料区间(密相区)停留时间延长约0.17s,有利于抑制NO生成;(2)中二次风喷口设计空气速度由48m/s提高到54m/s,增强了中二次风的穿透性和扰动性,提高了炉膛中心区域的传热强度和燃烧均匀性,减少了NOx生成量和排放量;(3)保持一次风量和上二次风量基本不变、二次风机变频器开度基本不变、二次风率β≈50%的情况下,通过调节下二次风和中二次风挡板开度来改变中二次风率km,随着中二次风率km增加,下二次风随之减少,意味着中二次风喷嘴以下的流化速度变小,物料停留时间增加,密相区和过渡区的还原性气氛增强,NOx的生成量和排放量减少;(4)随着中二次风率km增加,炉膛内空气含氧量随之增加,强化了福建无烟煤的后燃性,提高了炉膛出口烟温,增加了焦炭燃烧和挥发分N燃烧过程NO生成量,对NOx排放质量浓度起到双重作用;(5)当中二次风率km在45%~60%,虽然中二次风喷嘴以下的煤炭处于还原性气氛中不完全燃烧,但密相区内严重缺氧环境也延迟了颗粒的着火和燃烧,NO的生成量和排放量达到最低值;(4)当中二次风率km超过60%时,密相区内严重缺氧影响了NH3与NO的还原反应,导致NOx排放质量浓度增加。
3.3 上二次风率kup对NOx排放质量浓度的影响
保持一次风量基本不变、二次风机变频器开度不变、下二次风和中二次风挡板开度不变,通过调节上二次风挡板开度(配合微调一次风机出口挡板开度)来改变上二次风率kup。图4描述了上二次风率kup对NOx排放质量浓度的影响。
由图4可见:随着上二次风率kup的增加,NOx排放质量浓度呈现先平缓下降(kup≤15%)再逐渐上升的趋势,拟合公式为式(5),重合度为0.9749。
主要原因有:(1)在水冷壁前后墙标高12.65m处新增一层上二次风16个风嘴,上二次风喷口空气设计速度为64m/s,而该区域物料质量浓度较低,上二次风具有较强的穿透性和扰动性,可有效降低NOx生成量;(2)随着上二次风率kup的增加,虽然上二次风的穿透射程随之增加、混合和搅拌能力随之加强,也提高了中心区域的传热强度和氧气浓度,分级燃烧作用明显,可有效抑制NOx生成量;(3)当上二次风率kup超过15%后,上二次风喷嘴以下的煤炭处于还原性气氛中不完全燃烧,大量低温(约180℃)的上二次风的射入虽然提供了充裕的氧气,但降低了炉膛内的温度,延迟了颗粒的着火和燃烧;(4)本试验是保持一次风量和下、中二次风量基本不变,通过调节上二次风挡板开度(配合微调一次风机出口挡板开度)来改变上二次风率kup。上二次风率kup增加,意味着空气过量系数λ增加,而试验证明NO排放质量浓度随空气过量系数λ增加而增加。
3.4 对机械不完全燃烧损失q4的影响
图5、图6、图7分别描述了二次风率β、中二次风率km、上二次风率kup对机械不完全燃烧损失q4的影响。
由图5、图6、图7可见:二次风率β、中二次风率km、上二次风率kup对机械不完全燃烧损失q4的影响曲线均表现为开口向上的抛物线,拟合公式分别为式(7)、式(8)、式(9),重合度分别为0.9961、0.9878、0.9974。这表明对于燃烧福建无烟煤的中温旋风分离CFB锅炉,存在最佳的二次风率β、中二次风率km、上二次风率kup使q4最小。本次热态试验表明,在过量空气系数λ≈1.2的情况下,最佳的二次风率β为45%~55%,最佳的中二次风率km为45%~55%,最佳的上二次风率kup为5%~15%。
同时,与改造前的工业试验相比较可知,相近工况下机械不完全燃烧损失q4降低了1.0%~1.5%。这说明本次低氮燃烧改造对提高空气和燃料在炉内的扰动、混合有着明显的增强作用,从而降低了锅炉机械不完全燃烧损失q4,提高了CFB锅炉的运行经济性。
4 结语
75t/hCFB锅炉增加三层二次风的低氮燃烧改造,经工业热态试验和运行实践证明:该低氮燃烧改造使NOx排放质量浓度从约180mg/m3降低到140mg/m3左右,可减少NO排放3.43kg/h,按照锅炉平均年运行6500h计算,2台75t/hCFB锅炉每年可以减排NOx44.62t,少缴纳NOx排污费56362元。
文献信息
吴剑恒,俞金树,何宏舟,庄松田. 75 t/h中温分离CFB锅炉增加三层二次风的低氮燃烧改造[J]. 发电设备,2016,03:177-182.