首页 > 技术 > 火力发电 > 锅炉 > 正文

燃煤锅炉空预器堵塞研究进展

2018-07-07 09:01:36 来源:网络

当机组运行时排烟温度低于NH4HSO4酸露点温度,烟气中的NH4HSO4就会结露,再进一步吸附烟气中飞灰,形成粘附性混合物,积聚在空预器蓄热片上,导致空预器出现积灰和堵塞。火电机组运行中,空预器是重要的传热元件。其主要作用是将锅炉尾部烟道中的烟气中携带的热量,通过散热片传导到进入锅炉前的空气中,将空气加热到一定的温度。若是尾部烟道烟气温度较低,或者是空气温度较低,在经过空预器热量传递后,排烟温度会进一步降低,甚至低于NH4HSO4露点温度。产生大量的液态NH4HSO4,与飞灰混合后堵塞空预器。特别是在冬季机组运行时,环境温度、尾部烟道温度都相对较低,使得排烟温度也长期处于较低水平,大量的NH4HSO4结露堵塞空预器。根据表1资料表明,1机在负荷从660MW到330MW时,两侧排烟温度整体呈下降趋势,如图3所示:

图3 660MW时#12SCR流量趋势

大部分情况下,1机排烟温度110~130℃左右。这种情况下机组负荷稍微有所波动,排烟温度就会低于NH4HSO4结露温度,粘附在空预器上,堵塞空预器。堵塞较为严重时,一次风侧的压差最大可达1.56kPa,对机组的安全运行造成严重威胁。

(1)脱硝系统投运。

SCR脱硝系统投运后,为了保证脱硝效率,消耗的NH3往往大于脱硝反应的理论要求,这就使得有少量的NH3随着烟气流向至烟囱排放出去。脱硝系统运行中,烟气中过量的NH3会和SOX在SCR反应器内产生化学反应形成气态的NH4HSO4。此外随着运行时间的增加、入炉煤中部分杂质等因素影响等,SCR催化剂活性在逐渐下降,烟气脱硝效率降低、脱硝消耗的液氨增加,造成氨逃逸率增大。宝庆电厂SCR脱硝系统主要以SCR出口烟气NOX含量为控制标准。实际运行中,该测点测量值与实际值存在一定偏差,导致表1中两侧喷氨量也存在着偏差。该偏差随着运行时间,负荷的关系逐渐增大,最大偏差达10.7%。机组运行期间长时间两侧喷氨不均匀,不仅不利于机组脱硝,还会导致两侧烟气流通不一致、两侧空预器堵塞不一致,两侧一次风压差变大,锅炉燃烧环境变差,严重时会导致炉膛负压大幅度波动,甚至MFT至停机。

图4 330MW负荷时#12SCR流量趋势图

为保证烟气排放的环保要求,只能加大喷氨调节系数,增大喷氨量,造成机组#2SCR运行中喷氨长期大于#1SCR,空预器B的压差也明显高于空预器A。

(2)低负荷运行。

资料表明,SCR脱硝反应合适温度要求控制在在310~420℃之间,最佳反应温度为380℃左右,当温度过高或者过低时,脱硝催化剂效率都会有所下降。宝庆电厂#1机组为660MW火电燃煤机组,机组负荷日夜波动较大,锅炉燃烧情况复杂。

图2#1机排烟温度趋势图

图2表明,在机组低负荷运行时,排烟温度明显下降趋势。图3图4表明,低负荷运行时,#1、#2SCR流量偏差也增大。这主要由于当机组处于400MW负荷以下运行时,燃烧器燃烧效果减弱,燃烧时氣量偏大,燃料型生成的NOX增加。此外,锅炉燃烧并不是完全对称的,相对来说,B侧的NOX高于A侧,使得脱硝过程中A、B两侧喷氨量存在偏差。

同时SCR催化剂区域的温度较低(320℃左右),脱硝催化剂活性下降,脱硝反应效率降低。此时为了保证脱硝出口含量不超标,只能增加喷氨量,两侧喷氨量偏差增大,导致氨逃逸率增大,增加了NH4HSO4的生成量。同时,当催化剂层温度处于300℃时候,在同一催化剂的作用下,另一副反应也会发生:

生成的NH4HSO4会粘结在催化剂层,堵塞空预器。因此,只有当烟气温度处于310~420℃之间时,才允许投SCR脱硝系统。

3改进措施

(1)提高空预器排烟温度。有资料表明,若烟气侧的空预器冷端综合温度若高于露点温度,则低温腐蚀导致的空预器堵塞一般不可能发生,NH4HSO4也不会在空预器冷端结露。对于回转式空气预热器,空预器冷端综合温度Tk可由下式近似

计算:

式中:Tw为排烟温度;为空预器进口风温。由公式(1)可知,当机组负荷降低时,排烟温度下降,尤其冬季环境温度低,排烟温度和空预器进口风温随之更低,造成空预器冷端金属壁温降低。下面表2是2012、013空预器发生堵塞时候的运行数据:

表2 2012、013锅炉空预器堵塞期间锅炉相关统计数据

朋友圈热传垃圾分类列表 官方发声:错的!权威指南在这里朋友圈热传垃圾分类列表 官方发声:错的!

近期,一张包含103种垃圾的垃圾分类列表在网上热传,在湿垃圾干垃圾有害垃圾和可回收物这4个分类下,每一类都列出了20多种垃圾。因为内容详[详细]