首页 > 技术 > 电厂化学 > 水处理 > 正文

德国污水处理厂的磷回收

2016-12-04 10:27:20 来源:

目前德国在污水处理过程中的磷回收整体科研情况如何?各种物质流内的磷回收效率怎样?今后总体发展趋势如何?通读此文,可知晓答案。

1 导言

对于所有生命和植物来说,磷是十分重要的元素。在许多工业领域内,磷也是不可替代的原料,例如原料磷属于食品工业和肥料工业中的关键组分。此外,在饲料工业、制药工业、表面加工处理和高效电池中(锂-铁-磷电极),也需要各种磷化合物作为工业原料。

因为世界上只有少数几个国家拥有可经济开采,同时含有较少污染物质的磷矿,磷在今后几十年内将会变成稀有物质。图1显示了最近一些年来国际磷市场上价格的变化趋势: 磷原料价格可以在一年半内上升至10倍以上, 但在 2008—2009 年经济危机期间下跌至高峰价格的1/5,目前价格又开始逐步上升。

图 1 国际市场上原磷价格的发展情况

在德国和多数欧洲其他国家都没有自然磷矿,基本依靠原料磷或者肥料进口。鉴于这一原因, 近些年来许多工业国家,如德国、日本、加拿大、瑞典、美国和瑞士就磷回收开展了许多研究工作。

作为磷回收的主要基质,首先是考虑污水、市政污泥、污泥灰烬, 以及动物骨粉。其他一些基质例如化肥、生物质灰烬、堆肥物质、生物沼气装置的发酵物质或来自食品工业的剩余物质有些已经作为肥料被直接使用, 有些则优先考虑其他植物营养物质的循环利用。

市政污泥或市政污泥灰烬被认为是最具有磷回收潜力的物质。以前污泥是通过直接农用来循环利用大部分磷物质。但最近认为市政污泥在污水处理过程中积聚了许多有害物质,此外污泥中的含磷物质是否能被植物循环利用也被质疑,污泥农用逐步受到限制。作为替代方案,污泥处置逐步趋向热法处置。为了使得资源能够循环利用, 从市政污泥灰烬内进行磷回收反而变得日趋重要。

2 背景情况和框架条件

2.1磷物质流向和潜在磷回收量

根据德国统计局的数据, 2009—2010年德国在采用各种矿化肥料时总共使用103t磷。整个欧洲总共采用磷肥975t磷。

从全球自然矿产情况来看,每年原磷生产大约 176×106t。目前全球可以经济开采的磷矿储存量大约是 65 000×106t,因此从统计学角度分析,磷矿可开采时间大约 370 年。

与其它原料相比,似乎这一理论计算出的磷可用时间还很长。但问题是这些磷矿内的重金属含量在不断增加,例如目前被重金属污染时最高浓度可达 165mg镉/kgP 和700mg铀/kgP。此外, 随着世界人口数量不断上升,磷消费量也相应不断上升。也就是说,高质量低污染的优质磷矿将在大约 50 内被全部开采耗尽。

磷矿资源在世界各地的分布也差异很大。目前大约80%磷矿储存量位于摩洛哥、南美、中国、美国和约旦。这些国家的原磷生产总量占全球 70%。

为了应付今后的缺磷状况,可以采用循环利用措施来解决。例如可以在市政污水处理过程中,再生回收各种磷化学物质。德国 2009 年的市政污泥量是 1.96 ×106t绝干污泥,假定污泥中平均磷含量是 2.4%,则理论上可回收的磷含量是47000 t P/a, 大约相当于每年矿化性磷肥消耗量的 45%。另外,欧盟委托的一项研究也显示,欧盟 27个国家在2010 年的市政污泥产量是11.56×106t。同样假定污泥磷含量是 2.4%,则欧盟磷肥替代潜在能力约占28%。

虽然污泥农用问题很多,但目前仍然有很多欧洲国家将直接农用作为污泥处置方法。而在德国, 污泥处置明显趋向于热法处置, 今后还将不断发展 (图 2 )。从欧洲层面来看,总的污泥处置也是按这一方向发展:在 2006 年污泥焚烧比例只有 20.2%, 而在2010年上升至 27%,预测在 2020 年将提高上升至 32%。但与此同时,2020 年的欧洲污泥农用比例也将会稍微上升至 44%, 这是因为至 2010年 仍然还有14%的市政污泥必须被填埋,但这一填埋比例至 2020 年之前必须减少一半。

图 2 德国各种市政污泥处置途径的发展情况前几年在德国因为费用和处理容量原因,市政污泥的热法处置主要是通过水泥厂,尤其是在煤电厂的混烧而得到处理量的扩展,但现在情况有了很大变化。因为近些年来再生能源不断发展,煤电厂规模逐步缩小, 市政污泥的混烧比例也相应下降。而在新建的煤电厂内一般配置现代化的锅炉材料,因为设备质保原因,业主单位在质保期内不希望进行垃圾混烧处理。

在近些年来,建造了一些新的单污泥焚烧装置,这种单污泥焚烧装置正在朝各种分散型装置发展。这一技术发展趋势对于磷回收来说是十分有利的:一般来说,混烧产生的灰烬只能作为建筑材料被回收利用;而市政污泥内含有较高浓度的磷, 单污泥焚烧之后的灰烬内磷含量几乎和磷矿含量差不多,因此这些灰烬可以作为各种磷回收工艺的原始材料。

2.2植物吸收利用性能

市政污泥的农用处置主要是建立在市政污泥的肥效基础之上。市政污泥主要含磷,其次是含有钙和氮以及有机物质。但在污水处理过程中,市政污泥汇集了各种有害物质,例如重金属、药物残留物质、有害的有机化学物质等。除了必须权衡市政污泥的肥料益处和污染危害之间的关系之外,还必须考虑市政污泥内磷化合物的植物可利用性能。

在评估磷回收工艺技术是否适合时,除了考察磷回收效率的本身性能之外,还必须检查所抽提获得的磷化合物是否能被植物吸收利用。因为植物在将不同类型的磷化合作为营养物质吸收利用时, 效果差异很大。

在土壤内,磷可以不同磷结构形式存在:有机磷酸盐(例如植酸盐)、无机磷酸盐(例如磷灰石形式)和吸附性磷酸盐 (多数情况下吸附在Fe-/Al-和 Mn-氧化物和氢氧化物的羟基表面之上)。为了使得植物能够吸收磷元素, 必须事先转变成正态磷(PO43-)。对于不同磷化合物来说,其转变成正态磷的释放转变速率差异很大。此外,磷供给状态还和土壤pH-值以及植物本身性能有关。特别是对于市政污泥来说,植物可利用性能还和以下因素有关:

污泥的性质 (在沙土或者泥土内对过磷酸钙和过磷酸盐的研究显示,潮湿污泥中磷被植物吸收利用的效率明显高于干化污泥)

土壤中的pH-值或者市政污泥中的石灰含量 (含石灰的污泥在酸性土壤内具有较好的磷吸收性能, 但如果pH-值上升太高反而使得磷和微量营养物质的吸收能力下降)

除磷方式 (采用各种沉淀剂的化学除磷方式, 生物除磷方式)

不同的磷化合物形式 (在土壤内各种磷酸钙化合物的溶解性差异很大,从一代磷酸钙Ca(H2PO4)2、二代磷酸钙CaHPO4、磷酸钙Ca3(PO4)2至磷灰石(apatit) 溶解性明显下降)

市政污泥中的Fe/P-比例 (Fe/P-比例大于 2:1 时,磷吸收性能会明显变差,可供植物利用的磷酸盐浓度变得很低) 。因为在许多市政污水厂都投加铁盐除磷,当投加量超过一定数值之后磷盐将无法被植物吸收利用,这些市政污泥实际无法作为肥料被利用。

因为影响因素很多,在对生物除磷和/或化学除磷过程中,对所产生的不同磷化合物进行植物利用性能评估实际是很困难的。不同抽提试验和育苗试验之间的结果经常不能显示正相关。在评估市政污泥的肥效时,必须同时考虑现场的许多影响因素(例如土壤和植物类型,土壤的供磷水平)。尽管如此,一般的观点认为,化学除磷所占比例不应该超过20%,否则所产生的市政污泥含有太多Fe/Al物质,不适合作为农用肥料。

3 污水处理过程中进行磷回收

3.1可能进行磷回收的地点

以前市政污水处理领域内的磷回收主要是指污泥直接农用。因为可能含有有害物质和因为化学除磷,污泥中的磷化合物很难被植物吸收利用。近10年来在德国开发了许多磷回收工艺,来进一步解决以下问题:降低重金属含量

去除有机有害物质

改善植物吸收利用性能

在图 3 内显示了以下各种物质流的特点,并在表格1内总结了磷回收效率(相对于进水磷质流量来说):

市政污水厂出水 (1)

污泥处理过程水 (2)

脱水后污泥(3)

来自单污泥焚烧炉的市政污泥灰烬 (4)

图 3 市政污水厂内磷回收地点

表 1 各地点进行磷回收的特点

*参见图 3

**相对与市政污水厂的进水磷质流量而言

在以下章节内将对各种物质流内的处理工艺和技术进行简单介绍。在表格2内,根据图3内的系统描述,对各种处理工艺进行了归类,其中液相处理工艺被归结在一起。

3.2基质为污水或过程水

为了从液相回收磷,所有磷回收方法都基本采用沉淀和结晶处理工艺。传统沉淀方法一般会同时产生很多污泥,而采用结晶方法时则可以定向诱导产生明确定义的磷化合物。此时一般通过多个工艺步骤(提高 pH-值,变化氧化还原平衡状态, 提高温度)将侧流污泥中的固体磷转变成溶解性正态磷,然后通过投加晶种物质来诱导结晶过程。以下工艺或公司采用了这些工作原理:

Phostrip-工艺

Ostara-结晶工艺

DHV Cystalactor

Unitika Phosnix®-工艺

Nishihara Ltd. (利用海水作为镁源)

Kurita Ltd(Kurita 固定床反应器)

Ebara Corp.

MAP 结晶工艺

PRISA-工艺

REPHOS

朋友圈热传垃圾分类列表 官方发声:错的!权威指南在这里朋友圈热传垃圾分类列表 官方发声:错的!

近期,一张包含103种垃圾的垃圾分类列表在网上热传,在湿垃圾干垃圾有害垃圾和可回收物这4个分类下,每一类都列出了20多种垃圾。因为内容详[详细]